Cyan-ara Final Presentation

Cyanide Treatment Using Pure SO₂

Group P1

Kiavash Bakrani, Satvik Chandar, Joshua Donaldson, Vishnu Jayaprakash, Alex Lee, Jaideep Mullick, Vitorio Sambatti, Adam Wiebe

Introduction

Process Overview

Safety

Environmental Analysis

Economic Analysis

Introduction

Scope, Goals and Benefits, Market

The Solution

Cyanide Destruction

Ensure destruction to < 1 ppm cyanide [3]

Cyanide Recovery

 \pm

Recover Free Cyanide to re-use in leaching process, recover metal in leach solution.

Cyan-ara

- 1. Cyanide treatment using combined process utilizing pure Sulphur Dioxide
- 2. Production and Sale of Sulphur Dioxide and Recovery By-Products

Goals and Benefits

Reduce social, economical and environmental impacts caused by untreated tailings

Reduce overall plant size leading to lower capital costs and operational costs

Recycle cyanide from leach solution to reduce costs of purchasing new cyanide

Treatment Capacity 730,000 m³/year

Location: Sonora, Mexico

Process Overview

Recovery Section

10

Destruction Section

General Reaction Schemes

[2] [4]

P&ID, Control Narrative, HAZOP,

 Plant Layout, Cause & Effect Matrix

P&ID A-01-300

Contract Contract Contract

Floor Layout

Contract Contract Contract

HAZOP: Oxy-Furnace

Example of a Major HAZOP Deviation

Major Control Loops

Oxy-Sulphur Furnace

- Recycle cooled sulphur dioxide to furnace to control temperature
- Ensure temperature does not exceed 1500 degrees Celsius

- Ensure 3% excess oxygen is maintained in furnace
- Interlock sulphur flow in case temperature reaches High-High level

Temperature Feed Ratios Liquid Level in Waste Heat Boiler

- **Ensure sufficient water is** supplied to cool gas from Oxy-Sulphur furnace
- Ensure water level is not too high to prevent overflow

Cause and Effect Matrix

Start-up / Shut-down

Plant

- Addresses a general Start-up and Shut-down for the entire plant
- Every part of the plant still needs a detailed plan

P&ID

- Addresses Start-up and Shut-down in detail for PFD-300
- Main concern is pre-heating of Oxy-Sulphur furnace

Environmental Analysis

Air Emissions

Main Gas Emissions

HCN and SOx gas generation

Liquid Permitting

Main Concerns - Cyanide (all forms), Ammonia/Ammonium, Copper (and other metals)

Tailings Ponds are not regulated but any discharge to the natural environment has federally imposed limits.

Effluent requires further processing in conventional treatment units for non-cyanide species.

*Discharge limit dependent on effluent pH. A range of 6 - 8 was considered.

Solid Storage and Disposal

Solids for the process will be transported in a truck and stored in closed, dry containers

Proper handling and disposal of solids such as sodium hydrosulphide, sulphur and the copper catalyst needs to be maintained throughout the operation

\$10.6 million USD

Capital Cost investment required for the project

Economic Summary

Operating Expenses Sale Streams Sale Streams

Comparison

- Configuration 1 performs INCO process in Tanks
- Configuration 2 performs INCO in tailing ponds
- Costs in Table do not include Operator and Maintenance Costs, Plant Overhead, or G/A costs

Our Process vs other Composite Processes [9]

***Prices inflated from 2004 to 2020 prices**

Conclusion

Project is viable and compares well to other

Attractive Economics for leach solutions above 200 mg/L

Future work and challenges More detailed engineering and economic analysis needed to bring costs down

Acknowledgements

Dr. Dusko Posarac Capstone Advisor

Mr. Sergio Berretta Capstone Advisor

Mr. Kim Nikolaisen Industry Sponsor

UBC Applied Science

CREDITS: This presentation template was created by **[Slidesgo](http://bit.ly/2Tynxth)**, including icons by **[Flaticon](http://bit.ly/2TyoMsr)**, and infographics & images by **[Freepik](http://bit.ly/2TtBDfr)**

$$
\frac{1}{2}
$$

References

- [1] Macrotrends LLC, "Gold Prices 100 Year Historical Chart," Macrotrends LLC, 2020.
- [2] M. M. B. A. S. Terry I. Mudder, Chemistry and Treatment of Cyanidation Wastes, London: MINING JOURNAL BOOKS LTD, 2001.
- [3] K. H. T. I. M. Mark J. Logsdon, "MANAGEMENT OF CYANIDE IN GOLD EXTRACTION," International Council on Metals and the Environment, Ottawa, 1999.
- [4] S. M. Services, "Cyanide Recovery," SGS, 2013.
- [5] The National Institute for Occupational Safety and Health, "HYDROGEN CYANIDE," Centers for Disease Control and Prevention, 1988.
- [6] British Columbia Ministry of Environment, "New National Air Quality Standards for SO2," Canadian Council of Ministers of the Environment, Vancouver, 2016.

References

- [7] Government of Canada, "Justice Laws Website," 25 06 2019. [Online]. Available: https://laws-lois.justice.gc.ca/eng/regulations/sor-2002-222/page-10.html#docCont. [Accessed 15 02 2020].
- [8] Government of Canada, "Guideline for release of ammonia in wastewater effluents: guide," 03 2003. [Online]. Available: https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/publications/guideline-release-ammonia-wa stewater-effluents/guide.html#appa. [Accessed 10 03 2020].
- [9] G. P. D. a. T. C. Cheng, "A case study of CIP tails slurry treatment: comparison of cyanide recovery to cyanide destruction," *The European Journal of Mineral Processing and Environmental Protection,* vol. 4, no. 1, pp. 1-9, 2004.
- [10] T. P. H. &. D. J. Burkey, Encyclopedia of Inorganic Chemistry, First Edition, Hoboken: John Wiley and Sons, 2006.
- [11] En-Wiki, "Prussian Blue," Wikipedia Commons, 27 11 2005. [Online]. Available: https://en.wikipedia.org/wiki/Prussian_blue. [Accessed 27 03 2020].
- [12] Science Direct, "Metal Sulphides," Science Direct, 23 05 2016. [Online]. Available: https://www.sciencedirect.com/topics/chemistry/metal-sulfides. [Accessed 30 03 2020].

Appendix A - PFDs

Appendix B - Further Chemistry Details

Cyanide Metal Complexes

- ➤ Cyanide is a small and highly basic ligand, so it readily forms coordination complexes with metals.
- \triangleright Coinage metals (Cu¹⁺, Au¹⁺, Ag¹⁺) form stable dicyanometallates.
- ➤ Forms strongly bonded octahedral complexes with many stable metals (Fe²⁺, Fe³⁺, Ti³⁺, Co³⁺)
- \blacktriangleright Also forms weaker tetrahedral complexes with d⁸ metals (Ni^{2+}, Pb^{2+}) . [10]

Strongly Complex Fe(III) Cyanometallate

Prussian Blue: A Cyanometallate Derivative[11]

Metal Sulphates and Sulphides [12]

- ➤ Most transition metals freely form compounds with sulphate and sulphide groups. *e.g. CdS, Cu2 S, FeS2 , ZnSO4 , PbSO4*
- ➤ All transition metal sulphides are insoluble in water, so sulphidisation is a good option for removing metal ions form solution.
- ➤ Only lead and mercury for insoluble sulphates, so any metal sulphate formed is unrecoverable.
- ➤ Based on electronegativity ionic bond strength goes Zn>Cd>Fe>Co>Cu>Ni.

Cu₂S Chalcocite-A Very Common Copper Sulphide

Full Reaction Description For Non Trace Metals [2][4]

42

General Reaction Schemes

Appendix C - Startup and Shutdown

Start-up / Shut-down - General Procedure for Plant

Start-up Procedure

- Fill R-101, TH-101, R-201, TH-201, R-301, R-302 with water and turn on impellers Step 1
- Turn on P-101/102/201/202/401/403 and continuously circulate water Step 2
- Start NaOH feed to T-101 Step 3
- Step 4 Begin feeding utilities: Steam to E-301/302, BFW to H-301. Allow temperature to stabilize.
- Step 5 Feed cold water to T-401 and start P-402, slowly opening the control valve to maintain 1m of liquid in T-401.
- Start oxygen feed and pressurize F-301 and H-301 to 10 bar. Step 6
- Turn on C-301 and begin circulating gas Step 7
- Pre-heat F-301 to 300 C using built in heater. Step 8
- Start sulphur feed to E-301 and E-302. Allow E-302 to reach level setpoint. Step 9
- Start P-301. Ramp P-301 slowly to prevent spikes in furnace temperature. Step 10
- Start NaHS feed to R-101; catalyst, oxygen, and lime feed to R-401; acid feed to R-402. Step 11
- Step 12 Start acid and high Cu leech feed to R-101.

Shut-down Procedure

- Stop acid and high Cu leech feeds to R-101 and replace with clean water feed. Step 1 Allow 1 hour to treat and purge residual leech solution.
- Step 2 Stop NaHS feed to R-101; catalyst, oxygen, and lime feed to R-401; acid feed to R-402.
- Step 3 Close valves between T-401 to R-401, diverting all SO, to storage.
- Ramp down P-301 and sulfur feed to E-301/302. Reduce sulfur to furnace slowly to prevent drops Step 4 in furnace temperature.
- Step 5 Shutdown C-301.
- Stop oxygen feed. Step 6
- Shutdown P-402. Step 7
- Step 8 Stop utilities: Steam to E-301/302, BFW to H-301, CW to T-401.
- Step 9 Shutdown P-101/102/201/202/401/403.
- Step 10 Drain water from vessels to leeching ponds
- Step 11 Stop NaOH feed to T-101

Start-up / Shut-down - Detailed Procedure for P&ID

Start-up

- Step 1 Start natural gas and air flow to preheat oxygen line.
- Step 2 Start Oxygen flow to the furnace by closing valve PV-302 and opening valves FV-302 and FV-303. Allow F-301 and H-301 to pressure up to 10 bar. Use valve PV-302 to maintain a pressure of 10 bar in the system.

Maintain preheat sequence. Read temperature from TT-301. If the temperature of the furnace is below 300 °C, open PV-302 and FV-302. When the temperature setpoint is reached close FV-302 and PV-302. Continue sequence until system is ready to operate.

- Step 3 Start steam flow to E-301/E-302 by opening valves FV-304 and FV-305. Ensure valve PV-304 is closed and STM-315 is unblocked. Allow the steam system to pressurize to setpoint.
- Open valve LV-302 to allow boiler feed water to flow into H-301. Ensure valve PV-301 is closed to Step 4 build up pressure on the steam side.
- Start M-301 to action S-301. When level in E-301 reaches 40%, start agitator. Step 5
- Step 6 Allow Sulphur to overflow from E-301 into E-302. When level in E-302 reaches 40%, start agitator.
- Step 7 Start M-302 to action C-301 and slowly open valves PV-302, FV-302, and FV-303. Ensure 10 bar is maintained in the system.
- Step 8 Start P-301 and slowly open valve FV-301 while choking fuel flow to preheat exchanger. Switch FFIC-302 and TIC-301 to automatic and allow steady-state operation to take place.
- Set PIC-304 to automatic and block-in STM-315. Ensure all controllers are in AUTO. Step 9

Start-up Procedure Shut-down Procedure

Shutdown

Step 1

- Set valves FV-301. FV-302, and FV-303 to manual. Reduce feed to F-301 by incrementally closing FV-301. Monitor TT-301 ensuring the temperature
- Step 2 does not drop by more than 200 °C / 15 minutes.
- Step 3 Once TT-301 reads 400 °C, shutdown S-301 by stopping M-301.
- Step 4 Allow E-301 and E-302 to reach LL Level and trip P-301.
- Step 5 Close valve FV-301.
- Step 6 Once TT-301 reads 250 C, close LV-302 to stop utilities.
- Step 7 Open PV-301, FV-303 to flush all steam to steam header.
- Step 8 Allow F-301 to cool below 60 °C.
- Step 9 Shutdown C-301 by stopping M-302.
- Step 10 Close valves FV-302 and FV-303.
- Step 11 Allow the system to slowly depressurize by manipulating PV-302
- Drain boiler water to water header. Step 12
- Step 13 If required for maintenance, drain E-301 and E-302 by using a Vacuum Truck.

Appendix D - Further Economic Analysis

Project After Tax Cash Flow

Sources of Capital

- ★ Average cyanide concentration treated - 500 mg/L
- ★ Our Operating cost \$3.8 million / yr

Area Equipment Cost Breakdown

Area-100 Equipment Costs

Area-200 Equipment Costs

Area-300 Equipment Costs

Area-400 Equipment Costs

Comparison

★ Average cyanide concentration treated - 500 mg/L

★ Our Operating cost - \$3.8 million / yr

Effect of CN concentration on operating costs

Economic Analysis Parameters

 \sim

Appendix E - Project and Technology Development

Technology Development

- Many easy access deposits were quickly depleted
- **Extraction from trace** gold ores required
- Cyanide complexation developed in late 1800s

Gold Cyanidation Pulle Destruction and Recovery

- Cyanide recovery creates a value added recycle stream
- Dependent on local mineralogy (ex. Not viable for iron rich areas)
- Destruction process guarantees cyanide removal

Pure SO₂ Reagent

- Downstream destruction of cyanide is a needed
- Many possible reagents: SO₂, Caro's Acid, H₂O₂.
- SO_2 has lowest reagent cost.
- Pure SO₂ reduces capital and operating costs

Gold Mining Decision Flowchart

59